Início gtgt Inventário Conteúdo Tópicos Método de inventário médio em movimento Visão geral do método de inventário médio movente No método de estoque médio móvel, o custo médio de cada item de inventário em estoque é recalculado após cada compra de inventário. Este método tende a renderizar as avaliações de inventário e o custo dos produtos vendidos, os quais são intermediários entre os derivados do primeiro método de entrada, primeira saída (FIFO) e o método do último em primeiro término (LIFO). Esta abordagem de média é considerada uma abordagem segura e conservadora para reportar resultados financeiros. O cálculo é o custo total dos itens comprados divididos pelo número de itens em estoque. O custo do inventário final e o custo dos produtos vendidos são então definidos a este custo médio. Nenhuma camada de custo é necessária, como é exigido para os métodos FIFO e LIFO. Uma vez que o custo médio móvel muda sempre que há uma nova compra, o método só pode ser usado com um sistema de rastreamento de inventário perpétuo, de modo que um sistema mantém registros atualizados dos saldos de inventário. Você não pode usar o método de inventário médio móvel se você estiver usando apenas um sistema de inventário periódico. Uma vez que esse sistema apenas acumula informações no final de cada período contábil e não mantém registros no nível da unidade individual. Além disso, quando as avaliações de inventário são derivadas usando um sistema de computador, o computador torna relativamente fácil ajustar continuamente avaliações de inventário com este método. Por outro lado, pode ser bastante difícil usar o método da média móvel quando os registros de inventário são mantidos manualmente, uma vez que o pessoal de escritório ficaria sobrecarregado com o volume de cálculos necessários. Exemplo de método de inventário médio em movimento Exemplo 1. A ABC International possui 1.000 widgets verdes em estoque no início de abril, com um custo por unidade de 5. Assim, o saldo de inventário inicial de widgets verdes em abril é de 5.000. A ABC então compra 250 greeen widgets adicionais em 10 de abril por 6 cada (compra total de 1.500) e outros 750 widgets verdes em 20 de abril por 7 cada (compra total de 5.250). Na ausência de qualquer venda, isso significa que o custo médio móvel por unidade no final de abril seria de 5,88, que é calculado como um custo total de 11,750 (5,000 pontos de partida 1.500 compras 5,250 compras), dividido pelo total de on - Contagem de unidade de mão de 2.000 widgets verdes (1.000 saldo inicial 250 unidades compradas 750 unidades compradas). Assim, o custo médio móvel dos widgets verdes foi de 5 por unidade no início do mês e de 5,88 no final do mês. Vamos repetir o exemplo, mas agora incluem várias vendas. Lembre-se de que recalculamos a média móvel após cada transação. Exemplo 2. A ABC International possui 1.000 widgets verdes em estoque no início de abril, a um custo por unidade de 5. Ele vende 250 dessas unidades em 5 de abril e registra uma carga no custo de mercadorias vendidas de 1.250, o que É calculado como 250 unidades x 5 por unidade. Isso significa que agora existem 750 unidades em estoque, a um custo por unidade de 5 e um custo total de 3.750. A ABC então compra 250 widgets verdes adicionais em 10 de abril por 6 cada (compra total de 1.500). O custo médio móvel é agora de 5,25, que é calculado como um custo total de 5 250, dividido pelas 1.000 unidades ainda disponíveis. A ABC vende 200 unidades no dia 12 de abril e registra uma carga no custo de mercadorias vendidas de 1.050, que é calculado como 200 unidades x 5,25 por unidade. Isso significa que existem agora 800 unidades restantes em estoque, a um custo por unidade de 5,25 e um custo total de 4,200. Finalmente, a ABC compra mais 750 widgets verdes em 20 de abril por 7 cada (compra total de 5.250). No final do mês, o custo médio móvel por unidade é de 6,10, que é calculado como custos totais de 4 200 5 250, dividido pelo total de unidades remanescentes de 800 750. Assim, no segundo exemplo, a ABC International começa o mês com 5.000 Saldo inicial de widgets verdes a um custo de 5 cada, vende 250 unidades ao custo de 5 em 5 de abril, revisa seu custo unitário para 5,25 após uma compra em 10 de abril, vende 200 unidades no custo de 5,25 em 12 de abril e Finalmente, revisa seu custo unitário para 6.10 após uma compra em 20 de abril. Você pode ver que o custo por unidade muda após uma compra de inventário, mas não depois de uma venda de estoque. Os dados de remoção removem a variação aleatória e mostram tendências e componentes cíclicos inerentes à coleção Dos dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavização. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O valor do erro verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fratura direita) xn. O (a esquerda (fratura direita)) são os pesos e, claro, somam para 1.
No comments:
Post a Comment